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On the Continuity of lsochore 
Slopes, and the Divergence of 
the Curvature of the Vaporization 
Curve at  the Critical Point of a 
Simple Fluidf 

JOHN STEPHENSON$$ 

(Received June 17. 1976) 

The role of the exponent inequality p + y > I in the continuity of (aP/aT), with theslopeof 
the vaporization curve at the critical point is discussed. A connection between the diver- 
gence in the curvature of the vaporization curve and asymmetries in certain thermodynamic 
functions is established. It is shown, in the context of the scaling law equation of state, that 
the homogeneous phase specific heat C$') on the liquid branch of the coexistence curve is 
slightly lower than on the gas branch, at the same temperature. 

1 INTRODUCTION 

In the first part of this paper we discuss the continuity of isochore slopes 

r, = (~PDT), (1.1) 

at the critical point of a simple fluid. In the context of the scaling law equa- 
tion of state we observe that the exponent inequality /3 + y > l is suffiient 
to ensure the continuity of isochore slopes with the slope of the vaporization 
curve, irrespective of the direction of approach to the critical point, but is 
not necessary for the continuity of the slope of the critical isochore r,, with 
the slope of the vaporization curve 

r, = (dP/dT), (1.2) 
~ 

t Work supported in part by the National Research Council of Canada, Grant no. A6595 
$Science Research Council Senior Visiting Fellow, Department of Physics, Imperial 

$On leave from the Physics Department, University of Alberta, Edmonton, Alberta, 
College, London SW7 

Canada 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



56 J.  STEPHENSON 

at the critical point. These questions of continuity are also considered in 
generality via Clapeyron’s equation, taking into account the requirements of 
thermodynamics. 

In the second part of this paper we go on to discuss the origins of the 
divergence of the “curvature” of the vaporization curve (dZP/dT2),, at the 
critical point, with particular reference to the small asymmetries which 
arise in the specific heat and certain other thermodynamic functions whose 
leading terms are perfectly symmetrical (or perfectly skew-symmetrical). 
We shall consider both the general consequences of thermodynamics, via 
Clapeyron’s equation, and the specific formulae which come from the 
scaling law equation of state and from van der Waals’ equation. In particular 
we shall show that, according to the scaling law, the value of the constant 
volume specific heat C t )  on the liquid branch of the coexistence curve is 
slightly lower than that of the gas at the same temperature. 

Finally, we mention the r61e of Maxwell’s construction, in spite of its 
dubious validity, in the continuity of rv with r,, and in the divergence of 
(d*P/dT*), at the critical point. 

2 CONTINUITY OF r, AND THE EXPONENT INEQUALITY 
p + y > 1 .  

Recently the question has arisen again as to why (aP/aT), is continuous at 
the critical point of a simple fluid12.3,4. It is commonly stated that the critical 
isochore meets the vaporization curve u at the critical point in the P-Tphase 
diagram with the same slope. That is rc and r+ defined by 

are asserted to be equal. Experimental evidence on simple fluids is in favour 
of this equality. Indeed, sometimes the critical volume is measured by deter- 
mining the density of the fluid at which this equality holds: that is, by finding 
which isochore joins smoothly onto the vaporization curve.4 This equality is 
satisfied by van der Waals’ equation, with the two-phase region being con- 
structed in the usual way by Maxwell’s equal-area rule. And it is built into 
the scaling-law equation of state, as formulated by Widoms and Griffiths6,’J. 

Rice and Chang’ have suggested that the equality of r+ and r,will follow 
if the coexistence curve exponent p and the isothermal compressibility expo- 
nent y satisfy 

P + v >  1, (2.3) 
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VAPORIZATION CURVE AT THE CRITICAL POINT 

an inequality which will certainly hold if y > 1 since /? > 0. Their argument 
is based on the identity 

57 

(dP/dT),, = (aP/aT)ti,g + (aP/aV)~~,g(dV,,g/dT), (2.4) 

where the subscripts L ,  g denote the liquid or gas sides of the coexistence 
curve, and i = 1,2 indicates that the partial derivative is evaluated from the 
i-phase side of the phase boundary, with i = 1 for the homogeneous phase, 
and i = 2 for the two-phase region. We denote the limiting values of rv, 
evaluated on the phase boundary from the homogeneous phase side, by 

rl I lim T -+ T;rvf, (2.5) 

and 

rg = lim T -+ T;r, 
g’  

Then it is obvious from (2.4) that equality of both rl and rg with rc follows 
if and only if p + y > 1 as in (2.3).2 In order to complete the proof of equality 
of r+ with rc, which now equals rf and rg when p + y > 1, it would appear 
that one must make an additional assertion concerning the continuity of 
r, at the critical point, in order to extend the domain of equality of limiting 
isochore slopes from the coexistence curve, when r, = rg = rc when 
1 + y > 1, round to the critical isochore in the homogeneous phase where 
T + T:. For example, if we make the extra assumption that isochore slopes 
increase with increasing density, so azP/apaT > 0, then the desired equality 
r+ = rc = r, = rg follows at once. We remark that in deriving Libermann’s 
inequality 

P + V Y P S  (2.7) 
one assumes that PPIapBT > 0 between the coexistence curve and the 
critical isothermg. 

When the behaviour of the isothermal compressibility and the coexistence 
curve can be described purely by power laws with exponents y and p, then the 
inequality p + y > 1 is obviously a necessary condition for the continuity of 
r, at the critical point. We are, however, querying whether this inequality on 
its own may not be sufficient to establish in general the complete continuity 
of rv at the critical point irrespective of the direction of approach. In the 
very special context of the scaling law equation of state, this inequality is 
indeed sufficient to establish the complete continuity of r, at the critical 
point. 

The question of the continuity of the slope of the critical isochore rvc = 
(aP/aT), with the slope of the coexistence curve r, requires separate 
investigation. The most obvious necessary and sufficient condition is that 
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58 1. STEPHENSON 

(ap/aT)Vc be continuous along the critical isochore. This follows from the 
thermodynamic relations 

and 

in which the entropy S and the density p are continuous at the critical point. 
Below T,, P and p are functions of T only. The continuity of rvc is built into 
the scaling law equation of state by assumption, and consequently it is con- 
tinuous even when /? t y k 1, as we show explicitly below. The inequality 
/? + y > 1 is therefore not necessary for continuity of (aP/aT), alang the 
critical isochore. 

We summarize our conclusions in Table 1. 
The queried general problem of the sufficiency of the inequality /? + y > 1 

for the continuity of rv merits further investigation. Also it would be interest- 
ing to discover whether more physically intuitive conditions exist for the 
continuity of rvc along the critical isochore, than the obvious one considered 
above. 

3 CONTINUITY OF r, AND THE SCALING-LAW EQUATION 
OF STATE 

The question of the uniqueness of the limiting value ofr,at the critical point 
can readily be resolved in the context of the scaling-law equation of state, 
for whch 

P + y = Pa, 
where 6 is the critical isotherm exponent. In fact the condition that the 
homogeneous function of appropriate scaling variables representing r, 
should have positive degree is just PS > 1. This requirement is immediatelj 

(3.11 

TABLE I 
Role of inequality p + y > 1 

Problem General Case Scaling Law 

Complete continuity of rv 
Continuity of rvc along 
critical isochore sufficient for sufficiency 

Necessary, but not(?) sufficient Necessary and sufficient 
Neither necessary, nor(?) Not necessary and irrelevant 
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VAPORIZATION CURVE AT THE CRITICAL POINT 59 

satisfied if y x 1, since p > 0. Moreover, when y > 1, aZP/apaT vanishes 
at the critical point, and is positive throughout the critical region,’ as 
observed experimentally. 

However, the condition pS > 1 is not necessary for the equality ofr,  with 
r, which depends only on critical isochore properties, as discussed above. If 
we do set pS = 1, then we can have 

r, > r+ = i-, > rg. 
The exponents a, p and S can all take reasonable values, and there is no 
problem with (azP/aT2),. But difficulties arise over the behaviour of 
(aZP/apaT), which is no longer positive throughout the critical region, 
although it does retain the same (positive) sign along and close to the co- 
existence curve, as indeed it must, as we argue in the final paragraph of this 
section. Since p > 0, we must now have y < 1, a condition which we feel is 
unlikely to occur in practice, as we discuss below. (The remainder of this 
section contains mainly technical details pertaining to the scaling law 
equation of state. Note that in scaling-law formulae we have set P, = pc = 
T, = 1.) 

(3.2) 

The scaling relations between exponents are 

2 - a = p(s + 1) = 2p + y ,  (3.3) 
and (3.1). We require the specific heat exponent a to satisfy0 4 a < 1. If, as 
is usually the case, we assume y >/ 1 (and > 0, S > l), then from (3.3) 
one finds that p, y ,  S are further restricted to the ranges 

o < p  \ < + , I  4 y < 2 , 6 > ,  3, (3.4) 

which correspond to values observed in practice. However, in the special 
c s e  pS = I which d e  need now, the exponents are 

a = y =  1 - p , s =  u p ,  (3.5) 

so if p < f, a and S can attain “reasonable” values, but y < 1. 
The discontinuous limiting behaviour of r, when pS = 1 can readily be 

extracted from the scaling law equation of state, and the relevant expres- 
sions are collected in the Appendix, (A. 19) to (A.22). We find 

r+ = rc -da*(T,)/dT, (3.6) 
and 

where h’( -x0) > 0, since the isothermal compressibility must be positive. 
More generally, if one approaches the critical point along apath of constant 
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60 J. STEPHENSON 

x, with x = x, > -x0, say, then 

r, -+ rF + (sign Ap)h'(x,), x = x , .  

On the other hand, along paths on which x -, &, so I apI = o(zP), the leading 
term in the series part of (A.21) is Apzy-' = o(zS+r-l) = o(l), and we have 

(3.8) 

r, -+ rc, x -+ CO. (3.9) 

So r, is actually continuous for this latter class of paths, whlch includes the 
linear case. 

When PS = 1, there are some difficulties associated with h"(x). As x -+ 03 

which is negative. In spite of this, one must keep the constant C in (A.16) 
negative. Also when pS = 1, 

aZP/ZJpaT = p /  Apl "-'(-X//3)h"(x). (3.11) 

On the coexistence curve x = -x, we have h"(-x,) > 0, so a2P/apaT is 
positive around the coexistence curve, and in its immediate neighbourhood. 
However, on the critical isotherm, x = 0 and a2P/a@T vanishes. We may 
still take h"(x) > 0 for -x, < x < 0, so a2PIapLJT is positive between the 
coexistence curve and the critical isotherm. Just above T, where x > 0, 
a2P/apaT will be negative. But "close" to the critical isochore, in the sense 
that x -+ 03, h"(x) is negative (3.10), and 

a2P/apaT - C , Y T ~ - '  (3.12) 

is again positive, and diverges to + 03, since y < 1 when pS = 1. This erratic 
behaviour of PP/a@T has been discussed in order that one may appreciate 
the physical unacceptability of values of y less than unity. 

The necessity and sufficiency of the inequality p + y > 1 for the complete 
continuity of r, at the critical point follows straightforwardly from the 
general expressions for rv in the Appendix, so we omit a detailed proof. 

We append a final remark concerning the sign of a2PIaTaV. Quite 
generally, by differentiating (2.4), 

+ ( % ) T ( $ u .  
(3.13) 

Now writing the expected signs and exponents (according to scaling) for all 
quantities except a*P/aTaV which is denoted by ( ? ) ( - ~ ) v * - ~ ,  this equation 
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VAPORIZATION CURVE AT THE CRITICAL POINT 61 

is asymptotically (to leading order, omitting amplitudes) 
(-=)-" - (sign a p ) [ ( - = ) - ( ~ + P )  + ( ? ) ( - = ) ~ * + 8 - 2  + ( - 7 ) ~ P - z  - ( - - z ) ~ + ~ - z ] .  

(3.14) 

In scaling with y* = y ,  the four terms on the RHS all diverge like (-z)-@+P), 
and so must cancel. They will all change sign at the critical point, provided 
PP/aTN retains the same sign around the coexistence curve. We are assum- 
ing that (PP/8V2)T has the intuitively obvious sign of a p  in the vicinity of 
the critical point below T,. 

4 CONTINUITY OF r, AND CLAPEYRON'S EQUATION 

Clapeyron's equation for the slope of the coexistence curve is derived by 
requiring equality of chemical potentials of the saturated liquid and gas: 

s, - s, 
( $ u  = v, - v, 

By developing the numerator for the entropy difference between gas and 
liquid, one can investigate the continuity of rv on the coexistence curve. 
We have 

(4.2) 

where partial derivatives are evaluated on the coexistence curve from the 
homogeneous phase side. Now one can describe the shape of the coexistence 
curve by 

IV - Vcl - B,,,(-=)! (4.3) 
allowing if necessary for different amplitudes B,, B, for the liquid and gas, 
but retaining the same exponent p. Similarly, the constant volume specific 
heat varies as 

C$'& - (&/a)( -T)-". (4.4) 

(4.5) 

And we adopt 

(aP/aT), - r, t Ef,,(sign ~ p ) ( - ~ ) j + v * - l  

with E,,, > 0, as the form for r,, where y* is an exponent which equals y in 
the scaling theory. Such a form for r,is to be expected since the temperature 
variation of r, along the coexistence curve is described by 

d aP ( I )  (%)o = E(&, = (z)v + (G) ( $ u  
(4.6) 

- (signAp)(-z)-" + [-(--z)"][(signAp)(-~)fi-~], 
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62 J.  STEPHENSON 

where on the second line we indicate the signs and orders of magnitude of the 
various terms. In scaling theory 8* = (a + p )  and y *  = y .  Nowr,increases 
steadily with p around the coexistence curve, so the LHS of (4.6) has the 
same sign as (- AP). Consequently on the RHS the (a2P/aT*), term must be 
completely cancelled by part of the last term, and the exponent of the re- 
mainder must be y*  + p - 1. This cancellation can be verified explicitly for 
the scaling law equation of state. 

Inserting the above asymptotic forms in (4.2) we find that the entropy 
difference is 

If y* + p > 1 > a + p the second and third terms drop out, even after divi- 
sion by (Vg - V,) - (B, + B,)(-z)B. But i f y *  + p = 1 = a + p, we have 

where now 

rg = rc - E,, r, = rc + E,. (4.9) 
(4.8) imposes a restriction on the amplitudes, since by definition of rc in (2.1) 
the RHS must reduce to rc, which it obviously does in the symmetrical case, 
as in scaling theory. 

5 CURVATURE OF THE VAPORIZATION CURVE, AND 
ASYMMETRIES BETWEEN LIQUID AND GAS 

The curvature of the vaporization curve (d2 P/dTZ), is related to the specific 
heat Cp) in the two phase region, and can further be expressed in terms of 
the differences between certain thermodynamic functions evaluated on the 
coexistence curve from the liquid and gas sides. One can therefore relate 
any divergence in the curvature of the vaporization curve to asymmetries in 
the specific heat in the one-phase region. 

In general in the two-phase region at density p I o  

Near the critical point let the vaporization curve curvature be described 
by 

(dZP/dT2), - (-T)-', ( 5 4  
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VAPORIZATION CURVE AT THE CRITICAL POINT 63 

and let the specific heat along the critical isochore be 

C(') VC - ( A / ~ t ) ( - z ) - ~ .  (5.3) 
Then if (dZp/dTZ), is non-singular (or sufficiently weakly singular) then 

e = Ct, (5.4) 
as is the case in scaling theory, in which p(p,, T) is presumed to beanalytic 
in T. From (%I), or from differentiation of Clapeyron's equation, 

Now there is a (positive) jump discontinuity in the specific heat on entering 
the two-phase region, which is 

Near the critical point the isothermal compressibility diverges like 

K, [p(aP/ap)T]-l - C&z)-J', (5.7) 

A - ( ' ~ / C ) ( - T ) - ( ~ - ~ P - Y )  (5 .8)  

so the jump A diverges like 

By Rushbrooke's inequality 2 - 2p - y < a,11*12J3 so the divergence in the 
jump is at most as strong as the specific heat CE)divergence in (5.3). From 
( 5 . 9 ,  when (dZP/dT2), is expressed in terms of homogeneous phase 
quantities, we have 

T(d2P/dTZ), = [(c!: - c!)) + (A, - A,)]/(v, - vi), (5.9) 
whence it is obvious that asymmetries in C:)and A of order (V, - V,) are 
involved. 

In order to introduce the required asymmetries explicitly, let us write 

(dfldT)f = (-)(dP/dT), 11 + d l h  - PJP, + . . . I 3  (5.10) 

(aP/ap)Tf = (ap/aP)Tg [ + d2(p.! - P g ) / P c  + . . (5.11) 

(5.12) 
We have retained linear asymmetric terms since these give the dominant 

contributions in (5.9). Any asymmetries in (aP/aT), can be related to those 
in (aP/~?p)~  and (dp/dT), by (2.4). If a quasi-rectilinear diameter can be con- 
structed in the form 

;(Pi + P,)  - B , ( - T ) l - "  (5.13) 

Cs:) = C$) [ 1 + d,(pf - p,)/pc + . . .]. 
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64 J. STEPHENSON 

with liquid and gas densities separately described by 

with obvious generalizations if amplitude symmetry does not hold, then 
to leading orders 

But the exponent (1 - a - p ) / p  in (5.15) is greater than unity when y > 1, 
since, at least in scaling theory, 1 - a - 2p = y - 1 > 0, and is exactly unity 
for van der Wads' equation. So the coefficient d, is zero in practice, except 
for van der Wads' equation. In scaling theory, complete symmetry of the 
coexistence curve is assumed, and then d ,  is automatically zero. 

Substituting in (5.9), we obtain 

d 3 p c C ~ ~  + !- (E )  (21 [2  - 2d, - d,]. (5.16) 
dT2 P c  ' p  Tg 

This equation displays explicitly how the curvature of the vaporization curve 
acquires the same asymptotic divergence as C$')(and A), and yet depends on 
asymmetries in these quantities. From experiment, we know that the vapor- 
ization curve of a simple fluid bends upwards in the P-T phase diagram, so 
(d2P/dT2), > 0. Therefore the terms on the RHS of (5.16) must combine to 
give a positive result. This is achieved in scaling theory since then d, = 0, 
d, = 1 and d, < 0, as we shall show below. Moreover i f a  > 2 - 2p - y ,  then 
the Cc)  term is dominant, and we must have d, < 0. But this means that close 
to the critical point C$i > C::), and the liquid has a lower specific heat than 
the gas (on the coexlstence curve at the same temperature), even though 
both specific heats are divergent. This is somewhat surprising since one 
generally expects the liquid to have a greater specific heat than the gas. This 
result is confirmed by the scahng-law theory, and merits checking out 
experimentally. 

6 CURVATURE OF THE VAPORIZATION CURVE, AND 
SCALING THEORY 

According to scaling theory, the curvature of the vaporization curve is 

(6.1) 
where a, ( -xo) < 0 so the specific heat C::) is positive. This divergence can 

(d2P/dT2), = -d2a*(T)/dT2 - (2 - a)( l  - a)(-dx,)-aa,(-x,)/x;, 
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VAPORIZATION CURVE AT THE CRITICAL POINT 65 

now be related to C$') and A.  On the coexistence curve 

pC?)/T = -d2a*(T)/dTz - pd2,u(p, ,T)/dT2 - (-z/xo)-aa:(-xo), (6.2) 
where the final singular term is assumed to be positive for thermodynamic 
stability. The specific heat difference between liquid and gas is now 

C(I) - c(') = T(Vg - Vf)[d2a*(T)/dT2 + ( - ~ / x ~ ) - ~ a : ( - x ~ ) ] ,  (6.3) 

which is negative and vanishes like (--z)P-" at the critical point. 
In scaling, the coexistence curve and the derivative combination (aP/ 

aP)& are completely symmetrical in liquid and gas about the critical point, 
with 

v, ", 

(8Plap)Tlp = (pZK,)-' = (-z/X,)Y(Xo/P)h'(-Xo). 

Now it is obvious that d, = 0, d, = 1, and d, < 0 in (6.3). Combining the 
specific heat difference and the jump difference, both of which are positive 
and are entirely linear in (V, - V,), we obtain 

(6.5) 
which may be shown to be equivalent to (6.1) by use of the differential equa- 
tion (A. 13) for a, (x) when x = - x, . 

(6.4) 

(d2P/dTZ), = -dza*(T)/dT2 + (-dx,)-"[(p/x,)h'(-x,) - a:(-xo)], 

7 ROLE OF MAXWELL'S CONSTRUCTION 

We shall show briefly how Maxwell's tangent construction, or "equal-area" 
rule can be used to derive the continuity of r, with rv when the equation of 
state expresses the pressure P as an analytic function P* of V and T, as it is 
in the case of van der Waals' equation, for example. 

Suppose quite generally that 

P = P*(V, T). (7.1) 
In order to locate the coexistence curve at temperature T, set 

P, = P*(V,, T) = P*(V,, T), 

and apply the equal area rule 

P, (V, - V,) = vg P* (V, T) dV. (7.3) 
V 1  

Differentiating with respect to temperature, one obtains 
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66 J. STEPHENSON 

Letting T + Tc, one find that r,, defined in (2.1) as the limiting slope of the 
vaporization curve, equals the unique limiting value of rr = @P/BT), . 

The singular behaviour of (d2 P/dT2), also follows by a further differentia- 
tion with respect to temperature: 

where Ag and A, are the specific heat jumps. For van der Waals' equation 
(8 P/aT2), = 0, so the discontinuous behaviour of (dZ P/dTZ), arises in this 
case entirely from the specific heat jumps. Equation (7.5) may be compared 
with (5.9), and the asymmetries may be introduced explicitly as in (5.10) 
to (5.12) if desired, to give a formula analogous to (5.16). 

Of course, the well-known undesirable feature of the Maxwell construc- 
tion - that it employs the analytic continuation of the pressure into the 
two-phase region in order to locate the coexistence curve -persists in the 
above formulae. Our previous results such as (5.9) and (5.16) are of quite 
general validity. 

Appendix 

We summarize here the scaling law equation of state for a simple fluid, 
and derive expressions for the various derivatives referred to in the text. We 
employ a system of units in which the critical values of pressure, molar 
density, and temperature are unity: P, = p, = T, = 1. Also V = l / p .  The 
chemical potential p(p,  T) as a function of p and T is expressed in terms 
of the deviation from its value p( pc , T) on the critical isochore as follows: 

(A. 1) Q p(p7 T) - p(Pc7 T) = (sign A p ) l A p I S h ( x ) ,  

where 

x = T/ I apl " b ,  

T.= (T - T,)/T,, 

AP = ( P  - P C Y P , .  

Ap  is antisymmetric in Ap. Also p(p,, T) is taken to be analytic in T,so 
that A,U will be analytic in p and T throughout the homogeneous phase 
(one-phase region). h(x) vanishes on the phase boundary (coexistence curve: 
where x = -x, < 0. The equation of the coexistence curve is then 

I ApI = ( - T / X , ) ' .  (A.3: 
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VAPORIZATION CURVE AT THE CRITICAL POINT 67 

In the neighbourhood of the critical isotherm h(x) is assumed to have the 
expansion 

m 

h(x) = h , , ~ ” .  
n = O  

In the neighbourhood of the critical isochore h(x) is assumed to have the 
expansion 

(‘4.5) 
m m 

h(x) = 2 c, xP(s+l-zn)  = c, X - z b ( n - i ) ,  

n - l  n = l  

where we have set 

y = p ( s  - 1). 

This ensures that for T > T,, A p  can be expanded as a power series in ~p 
containing only odd powers. y will be the exponent for the isothermal com- 
pressibility, as may easily be seen from 

(p2KT)-’ = (ap/aph = I ApI ‘-‘[sh(X) - (x/p)h’(x)] 

( A 4  

(A.7a) 

(A.7b) 
m 

= -rvz cn (2n - l ) x - z P ( n - l ) ,  
n = l  

which, must be positive, for stability. On the coexistence curve 

(p2KT)-’ = ( - T / X O ) Y ( X ~ / P ) ~ ’ ( - X ~ ) .  tA.8) 
A further differentiation gives 

(A.9a) 

m 

= pry-’ 2 cn (2n - l ) [ y  - 2P(n - ~ ) ] x - ~ P ( ~ - I ) .  (A.9b) 
n = l  

If we set 

2 - a = p(s + 1) = 2p + y ,  (A. 10) 

LY will be the specific heat C, exponent, which must be less than unity so the 
entropy is finite. We consider only cases with 0 < LY < 1. 

a(f% T) = a*(T) + PP(Pc9 T) + 14J16+1am(X), (A. 11) 

where a*(T) is an unknown “background” free energy, presumed to be an 
analytic function of T. Since 

(aalap)T = p, (A. 12) 

The Helmholtz free energy per unit volume takes the form 
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68 J. STEPHENSON 

the function a,(x) must satisfy the differential equation 

-xah(x) + (2 - a)%(x) = ph(x). (A.13) 

The solution which is analytic near x = Ois unique, and may be written in the 
form 

The solution for x > 0 is 
m 

a,(x) = Cx2-, + p x 2 - , l  h(y)y"-)dy, (A. 15) 

where the constant C is determined by matching the two forms of the solu- 
tion for large x: 

a, h"b)yo-' dy, 
= -pJ  (2 - a)(l - a) (A. 16) 

C must be negative so that the specific heat is p0sitive.A suffficient condition 
for this is h"(x) > 0 for 0 < x < 00. By differentiation, we can now obtain the 
specific heat at constant volume Ct ): 

All three terms on the RHS are presumed to be negative. 

dynamic relation P = pup - a: 
An explicit formula for the pressure may be derived via the thermo- 

P(p, T) = -a*(T) + (sign Ap)l Ap('h(x) + I Apl'-'[h(x) - a,(x)]. (A.18) 
The critical value of the pressure is P, = P(p,, T,) = -a*(T,). Setting 
x = -xo, we obtain the equation of the vaporization curve, and its slope and 
curvature: 

P, = -a*(T) - ~ , ( - x , ) ( - T / x ~ ) ~ - ~ ,  (A. 19a) 

r, = (dP/dT), = -da*(T)/dT + (2 - ~ ) ~ , ( - X ~ ) ( - T / X ~ ) ~ - ~ / X , , ,  (A. 19b] 

(d2P/dT2), = -d2a*(T)/dTZ - (2 - a)(l - a)a,(-x,)(-dx,)-"/x~. (A.19c) 

We presume that a,( -xo) is negative in order that the specific heat CF)in the 
two-phase region be positive. The curvature of the vaporization curve is 
then positive in (A. 19c). 

A partial derivative of the pressure with respect to temperature gives the 
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VAPORIZATION CURVE AT THE CRITICAL POINT 69 

isochore slopes 
r, = (aP/aT), = -da*(T)/dT + (sign Ap)l Apl"-l/fih'(x) 

+ I ~ p l ~ + + l - l @ [ h ' ( ~ )  - a;(x)], (A.20) 

where a&(x) is given by the differential equation (A.13). Near the critical 
is o c h o r e 

r, = -da*(T)/dT - C(2 - 

and on the coexistence curve 

= -da*(T)/dT + (sign ap)(-./x,)P"-'h'(-x,) 
(A.22) r',P 

+ (-dx,)'-a[h'(x) - a;(.)]. 
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